VU Rendering SS 2015 186.101

Thomas Auzinger Károly Zsolnai

Institute of Computer Graphics and Algorithms (E186) Vienna University of Technology <u>http://www.cg.tuwien.ac.at/staff/ThomasAuzinger.html</u> <u>http://www.cg.tuwien.ac.at/staff/KarolyZsolnai.html</u>

VU Rendering SS 2015 Unit 05 – Participating Media

Light interaction with surfaces:

$$L_o(x,\vec{\omega}) = \underbrace{L_e(x,\vec{\omega})}_{emitted} + \underbrace{\int_{\Omega} L_i(x,\vec{\omega}') f_r(\vec{\omega}, x, \vec{\omega}') \cos \theta \ d\vec{\omega}'}_{emitted}$$

 $reflected \ incoming \ light$

Light interaction with surfaces:

$$L_o(x,\vec{\omega}) = \underbrace{L_e(x,\vec{\omega})}_{emitted} + \underbrace{\int_{\Omega} L_i(x,\vec{\omega}') f_r(\vec{\omega}, x, \vec{\omega}') \cos \theta \ d\vec{\omega}'}_{reflected \ incoming \ light}$$

Assumes:

- Interaction directly at the surface (true for metals)
- No interaction with the volume in between (true for vacuum)

Water

Surface approxiation not always valid \rightarrow need to extend our model of light transport for materials that

allow perceivable light penetration andperceivably interact with light.

absorption

- absorptionemission
- out-scattering

- absorption
- emission
- out-scattering
- in-scattering

- absorption
- emission
- out-scattering
- in-scattering

- absorption
- emission
- out-scattering
- in-scattering

$$(\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) = ?$$

 $= -\sigma_a(x)L(x,\vec{\omega})$

 $= -\sigma_s(x)L(x,\vec{\omega})$

 $=\varepsilon(x)$

- absorption
- emission
- out-scattering

Phase Function

For incoming direction $\vec{\omega}'$ how much radiance is scattered into direction $\vec{\omega}$?

- Phase function: $p(x, \vec{\omega}, \vec{\omega}')$
- Depends on the material
 - Size of particles
 - Geometry of particles
- Normalized, i.e., $\int_{A_{-}} p(x, \vec{\omega}, \vec{\omega}') d\vec{\omega}' = 1$

29

Phase Function

Henyey-Greenstein

- Interstellar dust
- Analytic
- Anisotropy g

Schlick Approxim. $p(\theta) = \frac{1}{4\pi} \frac{1 - k^2}{(1 - k\cos(\theta))^2}, k = 1.55g - 0.55g^3$

Lorenz-Mie Scattering

- Spherically homogeneous particles
- Full electrodynamic computation

Rayleigh Scattering

- Small particle approximation of Lorenz-Mie
- Covers scattering by pure air
- Depends on the light's wavelength

Also known as Radiative Transport Equation

$$\begin{split} (\vec{\omega} \cdot \nabla) L(x, \vec{\omega}) &= -\underbrace{\sigma_a(x) L(x, \vec{\omega})}_{\text{absorption}} - \underbrace{\sigma_s(x) L(x, \vec{\omega})}_{\text{out-scattering}} + \underbrace{\varepsilon(x)}_{\text{emission}} \\ &+ \underbrace{\sigma_s(x) \int_{4\pi} p(x, \vec{\omega}, \vec{\omega}') L(x, \vec{\omega}') d\vec{\omega}'}_{\text{in-scattering}} \end{split}$$

Also known as Radiative Transport Equation

Also known as Radiative Transport Equation

Also known as Radiative Transport Equation

Single scattering: compute $T_r(x_L, x_t)$ to light source

Conventional Rendering

Exponential Fog

Single Scattering

Multiple scattering: compute random walk

Sample phase function $p(x, \vec{\omega}, \vec{\omega}')$

e.g. Henyey-Greenstein
$$p(\theta) = \frac{1}{4\pi} \frac{1-g^2}{(1+g^2-2g\cos\theta)^{3/2}}$$

by inversion $\cos\theta = \frac{1}{2g} \left(1+g^2-\left(\frac{1-g^2}{1-g+2g\xi}\right)^2\right)$

- For a given direction, choose a distance d to travel based on $T_r(\,,\,,\,)$
 - If d is closer than the nearest surface \rightarrow scatter
 - If not, compute surface radiance

Distance d is given by the free-flight distance Sample with $d = \frac{-\ln(1-\xi)}{\sigma_t}$ (homogeneous media)

color **VPT**(o, ω) $s = nearestSurfaceDist(o, \omega)$ d = $-ln(1 - random()) / \sigma_+$ if (d<s) // Media scattering $o += d^*\omega$ return $\sigma_s / \sigma_t * VPT(o, samplePhase())$ else // Surface scattering

o += s*W $(\omega_i, pdf_i) = sampleBRDF(o, \omega)$ return BRDF(o, ω_i) * VPT(o, ω_i) / pdf_i

Questions?

